Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

M.Baldi*, M. Bianchi*, F. Chiaraluce*, J. Rosenthal**, D. Schipani**

*Università Politecnica delle Marche Ancona, Italy

**University of Zurich

Code Based Signature Schemes

- Standard signature schemes rely on classic cryptographic primitives as RSA and DSA
- They will be endangered by quantum computers as well as RSA and DSA
- Code-based cryptographic primitives could be used for digital signatures
- Two main schemes were proposed for code based signatures:
 - Kabatianskii-Krouk-Smeets (KKS)
 - Courtois-Finiasz-Sendrier (CFS)

KKS

- The KKS scheme is quite different from traditional code based cryptosystem
- It is based on two codes, one selecting the subset support of the other
- It does not require a decoding phase
- Majour issue: there is an attack for almost all of the parameter sets

CFS Sketch

Just a scheme! A lot of details are to be considered

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

June 6th, 2013 • 4/20

CFS (1)

- Close to the original McEliece Cryptosystem
- It is based on Goppa codes

> Public:

- \succ A hash function $\mathcal{H}(D)$
- A function F(h,...) able to transform the hash h into a vector that becomes a correctable syndrome for the secret code C, when multiplied by S⁻¹

\succ Initialization:

- The signer chooses a Goppa code G able to decode t errors and a parity check matrix H that allows decoding
- ➢ He chooses also a scrambling matrix S and publishes H'=SH

CFS (2)

 \succ Signing the document D:

> The signer computes $s = \mathcal{F}(\mathcal{H}(D),..)$

 \succ s' = s(**S**^T)⁻¹

- He decodes the syndrome s' through the secret parity check matrix H: eH^T=s'
- ➤ The error e is the signature

> Verification:

> The verifier computes $s = \mathcal{F}(\mathcal{H}(D),...)$

> He checks that $eH'^{T}=e(H^{T}S^{T})=s(S^{T})^{-1}S^{T}=s$

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

June 6th, 2013 ● 6/20

CFS (3)

- The main problem is to find an efficient function $\mathcal{F}(h,...)$ in such a way not to endanger the system
- For Goppa codes two techniques were proposed:
 - \succ Appending a counter to $\mathcal{H}(D)$ until a valid signature is generated
 - Performing complete decoding
- Both these methods require codes with very special parameters:
 - > very high rate
 - very small error correction capability

[•] M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

CFS (4)

- Codes with small t and high rate could be decoded, with good probability, through the Generalized Birthday Paradox Algorithm (GBA)
- It is particularly efficient when we can choose among more than one correct answers (multiple instances)
- In GBA, the columns of H' summing in the desired vector are selected by partial zero-summing

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

June 6th, 2013 • 8/20

CFS (5)

- Using GBA, decoding is not guaranteed (it is guaranteed in ISD decoding)
- GBA works with random vectors, for code-based algorithms the vectors are H' columns: lack of randomness requires extra-effort
- However, for the original CFS parameters, the average correct decoding probability is quite high

M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

LDGM codes

- LDGM codes are codes with low density in the generator matrix G
- They are known for other applications like concatenated decoding
- We will consider LDGM generator matrix in the form:

 $G = [I_k / A]$

• A valid parity check matrix is:

$$\boldsymbol{H} = [\boldsymbol{A}^T / \boldsymbol{I}_r]$$

- **G** row weight is W_G
- M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

June 6th, 2013 • 10/20

Idea

- We need a way to perform syndrome decoding without imposing too many restrictions on code parameters and error weight
- Using H in triangular form, it is trivial to find a vector e such that eH^T=s, for every s: it is just e =[0 | s]
- In this simplified scenario e has maximum weight equal to r (the redundancy of the code)

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

Idea (2)

- Differently from CFS not only decodable syndrome are used
- However it is simple to impose that syndromes are decodable from the secret codes (just impose a maximum syndrome weight w equal to the code error correction capability)
- It is not straightforward to ensure that those syndromes are uniquely decodable through the public code
- We need to check that e has a relatively low weight, otherwise it is easy to find e' such that e'H''=s and the weight of e' is about n/2
- l.e.

$$e' = ((H'^{T}(H' H'^{T})^{-1})s^{T})^{T}$$

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

Proposed Scheme

- Use LDGM codes, fixing a target weight w_c
- Use *H* with an identity block somewhere (i.e. on the right end)
- $H' = Q^{-1}HS^{-1}$
- ${\bf S}$ is a sparse, not singular, matrix with row and column weight $m_{\rm s}$

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

The Q-matrix

- $\mathbf{Q} = \mathbf{R} + \mathbf{T}$
- **T** is a sparse, not singular, matrix with row and column weight $m_{\rm T}$
- **R** is build upon two matrices, **a** and **b** having dimension (z x r)
- Our F(h,p) function has to transform an hash into a vector s such that bs=0 depending on the parameter p

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

Signing

- The signer chooses secret H, Q and S
- He computes s=F(H(D),p), it requires 2^z attempts in the average case
- s' = **Q**s
- He "decodes" the syndrome s' through the secret parity check matrix H: eH^T=s', that is e =[0|s']
- He chooses a random low-weight codeword c having weight w_c that is (close to) a small multiple of w_G , w_c is made public
- The signature is the couple $[p,e'=(e+c)S^{T}]$

Verification

- The verifier computes the vector s=F(H(D),p) having weight w
- The verifier checks that the weight of e' is equal or smaller than $(m_T w + w_c)m_s$
- He checks that e'H'' = s

Using QC-Codes

 The scheme can be designed using Quasi-Cyclic codes as already proposed for QC-LDPC based McEliece Cryptosystem

$$G_{QC} = \begin{bmatrix} C_{0,0} & C_{0,1} & C_{0,2} & \dots & C_{0,n_0-1} \\ C_{1,0} & C_{1,1} & C_{1,2} & \dots & C_{1,n_0-1} \\ C_{2,0} & C_{2,1} & C_{2,2} & \dots & C_{2,n_0-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{k_0-1,0} & C_{k_0-1,1} & C_{k_0-1,2} & \dots & C_{k_0-1,n_0-1} \end{bmatrix}$$

 If the circulant blocks have dimension I x I, it implies factor I reduction in the key dimension

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

Rationale

- Removing the request for high rate codes makes GBA unfeasible even taking advantage of the quasi-cyclic nature of the codes
- The known ISD algorithms are not able to find errors of moderately high weight in reasonable time for the proposed parameters
- The insertion of the codeword c is necessary to make the system not-linear (it is an affine map)
- The use of Q reinforces the system against the most dangerous known attack (Support Intersection Attack)

Parameters

SL (bits)	n	k	p	w	w_g	w_c	z	m_T	m_S	A_{w_c}	N_s	S_k (KiB)
80	9800	4900	50	18	20	160	2	1	9	$2^{82.76}$	$2^{166.10}$	117
120	24960	10000	80	23	25	325	2	1	14	$2^{140.19}$	$2^{242.51}$	570
160	46000	16000	100	29	31	465	2	1	20	$2^{169.23}$	$2^{326.49}$	1685

 For the same security levels (SL), CFS requires Key Sizes (S_k) in the range 1.25-20 MiB (parallel version) or greater than 52 MiB (standard version)

• M. Baldi, M. Bianchi, F. Chiaraluce, J. Rosenthal, D. Schipani - Using LDGM codes and Sparse Syndromes to Achieve Digital Signatures

June 6th, 2013 • 19/20

Future Works

- Build new attacks
- Is it possible to increase the ISD efficiency taking advantage of the QC nature of the codes?
- Is it possible to reduce the problem to a known NPproblem? (...we know it is not the end of the story)