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Fully Homomorphic Encryption (FHE)

Enables unlimited computation on encrypted data

Need scheme with unlimited add and mult capability

• Idea: Rivest, Adleman, Dertouzos (1978)

• Boneh, Goh, Nissim (2005): unlimited add + 1 mult

• Breakthrough: Gentry (2009) showed

such schemes exist 

• A lot of progress since then

• Gentry, Halevi, Smart (2012): homomorphic evaluation of AES

5 minutes per block (16 bytes)



Homomorphic Encryption from RLWE

Encryption from RLWE

• RLWEencrypt (Lyubashevsky, Peikert, Regev 2010)

• secureNTRU (Stehlé, Steinfeld 2011)

Homomorphic encryption schemes from (R)LWE

• RLWE FHE: BV (Brakerski, Vaikuntanathan 2011)

• Leveled HE: BGV (Brakerski, Gentry, Vaikuntanathan 2012)

• Multi-key scheme from NTRU 

(López-Alt, Tromer, Vaikuntanathan 2012)

• Scale-invariant HE from LWE (Brakerski 2012)

• Scale-invariant HE from RLWE (Fan, Vercauteren 2012)



This talk

Rather theoretical result: 

A fully homomorphic encryption scheme

• Based on secureNTRU

with security based only on RLWE 

(and a circular security assumption) 

• no need for the SPR assumption 

(from NTRU-based multi-key FHE)



This talk

More practical result: 

A leveled homomorphic encryption scheme

• Based on NTRU 

with security based on RLWE 

and SPR assumption (as in NTRU-based multi-key FHE)

• Using “Regev-style” encryption [B12]

i.e. scale invariant without modulus switching

• Ciphertexts have only one element (half the size of BGV) 

• Parameters comparable to BGV 



In this talk

there will be No Bootstrapping!

only leveled homomorphic encryption

In “practice”, one tries to avoid bootstrapping



A Ring 𝑅

Let Φ𝑑 be the 𝑑-th cyclotomic polynomial for 𝑑 > 0.

• Define 

𝑅 = 𝐙 𝑋 /(Φ𝑑(𝑋))
represented by the set of polynomials with integer coefficients 

of degree less than 𝑛 = deg Φ𝑑 = 𝜑 𝑑

• 𝑎 =  𝑖=0
𝑛−1 𝑎𝑖𝑋

𝑖 ∈ 𝑅, 𝑎 ∞ = max
𝑖

{|𝑎𝑖|}

• For an integer modulus 𝑞 let 𝑅𝑞 = 𝑅/𝑞𝑅

For example:  𝑑 = 2𝑘 , 𝑛 =
𝜑 𝑑

2
= 2𝑘−1, 𝑅 = 𝐙 𝑋 /(𝑋𝑛 + 1)



A Discrete Noise Distribution 𝜒

Let 𝜒 be a probability distribution on 𝑅
that samples small elements 𝑎 ← 𝜒 with high probability 

e.g. a discrete Gaussian distribution

• For example: If 𝑑 = 2𝑘 , 𝑛 = 2𝑘−1, 𝑅 = 𝐙 𝑋 /(𝑋𝑛 + 1), can take

𝜒 = 𝐷𝑍𝑛,𝜎

• i.e. each coefficient is sampled independently from a one-

dimensional discrete Gaussian with standard deviation 𝜎

• probability proportional to exp(−𝜋 𝑥 2/𝜎2) for each 𝑥 ∈ 𝐙



Ring Learning With Errors (RLWE)

Problem: distinguish between two distributions

1. Uniform distribution (𝑎, 𝑏) ∈ 𝑅𝑞
2

2. The distribution that for a fixed 𝑠 ← χ

samples 𝑎 ← 𝑅𝑞 uniformly, an error e ← χ

and outputs (𝑎, 𝑎 ∙ 𝑠 + 𝑒)

Given the Ring 𝑅, modulus 𝑞, 𝑅𝑞 = 𝑅/𝑞𝑅, and the 

probability distribution χ on 𝑅

Assumption: The RLWE problem is hard, i.e.

𝑎, 𝑎 ∙ 𝑠 + 𝑒 ~ 𝑎, 𝑏 looks uniform random 

(Lyubashevsky, Peikert, Regev 2010)



(Symmetric) Encryption from RLWE

BV (Brakerski, Vaikuntanathan 2011) encryption: 

Sample 𝑎 ← 𝑅𝑞 uniform, 𝑒 ← χ error/noise

b = 𝑚 + 𝑎 ∙ 𝑠 + 2𝑒 mod 𝑞, ciphertext c = a, b

𝑏 − 𝑎 ∙ 𝑠 = 𝑚 + 2𝑒 mod 𝑞
decrypt: 𝑏 − 𝑎 ∙ 𝑠 mod 2

decrypts correctly if 𝑒 ∞ <
𝑞

2

Message 𝑚 ∈ 𝑅/2𝑅
𝑠 ← χ secret key

m 2e q



Homomorphic Addition

c1 = 𝑎1, 𝑏1 = a1, 𝑚1 + 𝑎1 ∙ 𝑠 + 2𝑒1

c2 = 𝑎2, 𝑏2 = a2, 𝑚2 + 𝑎2 ∙ 𝑠 + 2𝑒2

Addition: 

c3 = (a3, b3)

= 𝑐1 + 𝑐2 = 𝑎1 + 𝑎2, 𝑚1 + 𝑚2 + 𝑎1 + 𝑎2 ∙ 𝑠 + 2 𝑒1 + 𝑒2

encrypts 𝑚1 + 𝑚2 mod 2, i.e. sum in 𝑅2



Homomorphic Multiplication

Multiplication (BV):
𝑏1 − 𝑎1 ∙ 𝑠 𝑏2 − 𝑎2 ∙ 𝑠 = (𝑚1+2𝑒1) (𝑚2+2𝑒2)

= 𝑚1𝑚2 + 2(𝑚1𝑒2 + 𝑚2𝑒1 + 2𝑒1𝑒2)

𝑏1 − 𝑎1 ∙ 𝑠 𝑏2 − 𝑎2 ∙ 𝑠 = 𝑏1𝑏2 − 𝑏1𝑎2 + 𝑏2𝑎1 𝑠 + 𝑎1𝑎2𝑠
2

New ciphertext: c3 = (𝑎1𝑎2, 𝑏1𝑎2 + 𝑏2𝑎1, 𝑏1𝑏2) now 3 elements!

Relinearization transforms it back to two elements (key switching)

Encrypts 𝑚1 ⋅ 𝑚2 mod 2, i.e. product in 𝑅2

c1 = 𝑎1, 𝑏1 = a1, 𝑚1 + 𝑎1 ∙ 𝑠 + 2𝑒1

c2 = 𝑎2, 𝑏2 = a2, 𝑚2 + 𝑎2 ∙ 𝑠 + 2𝑒2



Noise Growth

• Initial noise: 𝐵
• Addition: noise terms add up, 𝐵 → 2𝐵
• Multiplication: noise terms are multiplied, 𝐵 → 𝐵2

• 𝐵2 → 𝐵4, 𝐵4 → 𝐵8, … , 𝐵2𝐿−1
→ 𝐵2𝐿

(L levels of multiplications)

𝐵
𝑞

𝐵
> 2

𝐵2 𝑞

𝐵2 > 2

𝐵4 𝑞

𝐵4 > 2𝑚1𝑚2𝑚3𝑚4

𝑚3𝑚4

𝑚4𝑚3

𝑚1𝑚2

𝑚2𝑚1



Modulus Switching

Switch (scale down) to a smaller modulus after each mult. level

• Need a chain of moduli 𝑞 = 𝑞0, 𝑞𝑖 ≈
𝑞𝑖−1

𝐵

𝐵
𝑞

𝐵
=

𝑞0

𝐵
> 2

𝐵
𝑞

𝐵2 =
𝑞1

𝐵
> 2

𝐵
𝑞

𝐵3 =
𝑞2

𝐵
> 2𝑚1𝑚2𝑚3𝑚4

𝑚1𝑚2

𝑚1𝑚2

𝑚3𝑚4

𝑚3𝑚4

• 𝐵2 → 𝐵3 → 𝐵4, … , → 𝐵𝐿 (L levels of mult)

• Leveled homomorphic encryption

Brakerski, Gentry, Vaikuntanathan (BGV, 2012)



Avoiding Modulus Switching

Regev (2005) encryption for RLWE (Fan, Vercauteren 2012): 

Sample 𝑎 ← 𝑅𝑞 uniform, 𝑒 ← χ noise

𝑏 =
𝑞

2
𝑚 + 𝑎 ∙ 𝑠 + 𝑒 mod 𝑞, ciphertext c = a, b

𝑏 − 𝑎 ∙ 𝑠 =
𝑞

2
𝑚 + 𝑒,  decrypt:   

2

q
(𝑏 − 𝑎 ∙ 𝑠)

decrypts correctly if 𝑒 ∞ <
𝑞

4
because

𝑞

2
⋅ 2 = 𝑞 − (𝑞 mod 2), i.e. 

𝑞

2
⋅
2

𝑞
= 1 −

𝑞 mod 2

𝑞
(q/2)m 2 q

Message 𝑚 ∈ 𝑅/2𝑅
𝑠 ← χ secret key



Scale-invariant Multiplication

Multiplication (FV):

• 𝑏1 − 𝑎1 ∙ 𝑠 𝑏2 − 𝑎2 ∙ 𝑠 = (
𝑞

2
𝑚1 + 𝑒1) (

𝑞

2
𝑚2 + 𝑒2)

=
𝑞

2

2

𝑚1𝑚2 +
𝑞

2
(𝑚1𝑒2 + 𝑚2𝑒1) + 𝑒1𝑒2

•
2

𝑞
𝑏1 − 𝑎1 ∙ 𝑠 𝑏2 − 𝑎2 ∙ 𝑠 =

𝑞

2
𝑚1𝑚2

+ 𝑚1𝑒2 + 𝑚2𝑒1 +
2

𝑞
𝑒1𝑒2 +  𝑒

• New noise term is of size 𝐶 ∙ 𝐵, after 𝐿 levels 𝐶𝐿 ∙ 𝐵
𝐶 independent of 𝐵



Multi-key homomorphic encryption
López-Alt, Tromer, Vaikuntanathan (2012)

Message 𝑚 ∈ 0,1
Sample 𝑓, 𝑔 ← 𝜒, 𝑓 = 1 + 2𝑓′ invertible mod 𝑞

secret key 𝑓, public key ℎ =
2𝑔

𝑓

NTRU-like encryption:

Encryption: Sample s, 𝑒 ← 𝜒

c = 𝑚 + ℎ ∙ 𝑠 + 2𝑒 mod 𝑞
Decryption: 𝑚 = 𝑓 ⋅ 𝑐 mod 𝑞 mod 2, since

𝑓 ∙ 𝑐 = 𝑚 + 2(𝑔𝑠 + 𝑒𝑓 + 𝑚𝑓′),

decrypts correctly if 𝑔𝑠 + 𝑒𝑓 + 𝑚𝑓′ <
q

2
.



Multi-key homomorphic encryption
López-Alt, Tromer, Vaikuntanathan (2012)

c1 = 𝑚1 + ℎ1 ∙ 𝑠 + 2𝑒1 𝑓1 ⋅ 𝑐1 = 𝑚1 + 2 𝑔1𝑠1 + 𝑓1𝑒1 + 𝑚1𝑓1
′ mod 𝑞

c2 = 𝑚2 + ℎ2 ∙ 𝑠 + 2𝑒2 𝑓2 ⋅ 𝑐2 = 𝑚2 + 2 𝑔2𝑠2 + 𝑓2𝑒2 + 𝑚2𝑓2
′ mod 𝑞

Multiplication:
(𝑓1 ⋅ 𝑐1)(𝑓2 ⋅ 𝑐2) = (𝑚1+2𝐸1) (𝑚2+2𝐸2)
= 𝑚1𝑚2 + 2(𝑚1𝐸2 + 𝑚2𝐸1 + 2𝐸1𝐸2)

For 𝑓1 = 𝑓2 = 𝑓 (i.e. 𝑔1 = 𝑔2 = 𝑔, ℎ1 = ℎ2 = ℎ):

Ciphertext 𝑐1 ⋅ 𝑐2 mod 𝑞 decrypts under 𝑓2 instead of 𝑓
Key switching transforms it back to a ciphertext that decrypts under 𝑓



Multi-key homomorphic encryption
López-Alt, Tromer, Vaikuntanathan (2012)

• Replaces uniform random 𝑎 ← 𝑅𝑞 by polynomial ratio ℎ =
2𝑔

𝑓

• Security follows from RLWE if ℎ =
2𝑔

𝑓
looks uniform random

RLWE LATV12

𝑎 ← 𝑅𝑞 uniform random

Secret 𝑠 ← 𝜒
Noise 𝑒 ← 𝜒

PK: ℎ =
2𝑔

𝑓
,  SK: 𝑓, 𝑔 ← 𝜒

Noise  𝑠 ← 𝜒, 𝑒 ← 𝜒

𝑏 = 𝑎 ⋅ 𝑠 + 2𝑒 c= ℎ ⋅ 𝑠 + 2𝑒 + 𝑚



Modified NTRU
Stehlé, Steinfeld (2011)

Theorem (Stehlé, Steinfeld 2011): 

If 𝑑 = 2𝑘 , 𝑛 = 2𝑘−1, 𝑅 = 𝐙 𝑋 /(𝑋𝑛 + 1), 𝜒 = 𝐷𝑍𝑛,𝜎

then the SPR assumption holds if 𝜎 > poly 𝑛 ⋅ 𝑞.

LATV12 make an additional assumption, the

Small Polynomial Ratio (SPR) assumption:

•
𝑔

𝑓
looks uniform random in 𝑅𝑞

LATV12 conclude that such 𝜎 is too large for homomorphism 



Observation

• The distribution for sampling 𝑓, 𝑔 needs not be the same as that 

for sampling 𝑠, 𝑒
• Choose different distributions 𝑓, 𝑔 ← 𝜒key and 𝑠, 𝑒 ← 𝜒err with 

different standard deviations 𝜎key and 𝜎err

RLWE LATV12

𝑎 ← 𝑅𝑞 uniform random

Secret 𝑠 ← 𝜒err

Noise 𝑒 ← 𝜒err

PK: ℎ =
2𝑔

𝑓
,  SK: 𝑓, 𝑔 ← 𝜒key

Noise  𝑠, 𝑒 ← 𝜒err

𝑏 = 𝑎 ⋅ 𝑠 + 2𝑒 c= ℎ ⋅ 𝑠 + 2𝑒 + 𝑚



Basic Encryption Scheme

• KeyGen: 𝑓, 𝑔 ← 𝜒key, 𝑓 = 1 + t𝑓′ invertible mod 𝑞

SK: 𝑓, PK: ℎ =
t𝑔

𝑓

• Encrypt: 𝑚 ∈ 𝑅/𝑡𝑅, 𝑠, 𝑒 ← 𝜒err, 𝑐 =
𝑞

𝑡
𝑚 + ℎ𝑠 + 𝑒

• Decrypt: 𝑚 =   
𝑡

𝑞
(𝑓 ⋅ 𝑐 mod 𝑞) mod 𝑡

• 𝑓 ⋅ 𝑐 ≡
𝑞

𝑡
𝑚 + 𝑣 mod 𝑞, 𝑣 is the noise level in 𝑐

Decryption is correct, if 𝑣 ∞ <
𝑞

𝑡
− 𝑡 /2

• Noise in a fresh ciphertext is 𝑣 ∞ < 𝛿𝑡𝐵key(2𝐵err + 𝑡/2),

where  𝐵key and 𝐵err are bounds on the norms of the noise polys



Homomorphic Multiplication

• First step:  𝑐3 =   
𝑡

𝑞
(𝑐1 ⋅ 𝑐2) mod 𝑞

But this needs to be decrypted with 𝑓2

• Use the following functions: 

𝑃𝑤 𝑓 = 𝑓 ⋅ 𝑤𝑖 mod 𝑞
i=0

ℓ−1

and 𝐷𝑤 𝑐 is the base 𝑤 decomposition of 𝑐, i.e. 

𝐷𝑤 𝑐 = 𝑐𝑖 𝑖=0
ℓ−1, 𝑐 =  𝑖=0 𝑐𝑖𝑤

𝑖.

Then  〈𝐷𝑤 𝑐 , 𝑃𝑤 𝑓 〉 = 𝑓𝑐 mod 𝑞.

• In key generation compute and publish evaluation key 

𝛾 = 𝑃𝑤 𝑓 + 𝒆 + ℎ𝒔, where 𝒆, 𝒔 ← 𝜒𝑒𝑟𝑟
ℓ , ℓ = log𝑤(𝑞) + 2

• KeySwitch: compute c3 = 〈𝐷𝑤  𝑐3 , 𝛾〉



Noise Growth in Homomorphic Multiplication

• Assume 𝑐1 and 𝑐2 have noise levels bounded by 𝑉
• and key and noise distribution are bounded by 𝐵key and 𝐵err, resp.

• 𝑓𝑐3 =
𝑞

𝑡
𝑚1𝑚2 + 𝑣 mod 𝑞

𝑣 ∞ < 𝛿2𝑡2𝐵key𝑉 + 𝛿2𝑡2𝐵key
2 + 𝛿2𝑡ℓ𝑤𝐵err𝐵key

• Indeed, if 𝜎key is as demanded by Stehlé and Steinfeld, then there 

is no guarantee that the noise is less than 𝑞



Avoiding the SPR assumption

Use tensor products of decompositions and powers 

(see Brakerski 2012) 

• Change multiplication from  𝑐3 =   
𝑡

𝑞
(𝑐1 ⋅ 𝑐2) mod 𝑞

to  𝑐3 =   
𝑡

𝑞
𝑃𝑤(𝑐1) ⊗ 𝑃𝑤(𝑐2) mod 𝑞 ∈ 𝑅𝑞

ℓ2

• This intermediate ciphertext decrypts under 𝐷𝑤 𝑓 ⊗ 𝐷𝑤 𝑓
• Adjust evaluation key to 

𝛾 = 𝑓−1𝑃𝑤 𝐷𝑤 𝑓 ⊗ 𝐷𝑤 𝑓 + 𝒆 + ℎ𝒔 mod q ∈ 𝑅𝑞
ℓ3

• Noise bound is now 

𝑣 ∞ < 𝛿2𝑡 w log𝑤(𝑡𝐵key) 𝑉 + 𝛿2𝑡2 𝑤 log𝑤(𝑡𝐵key) + ⋯



Noise growth small enough to use Stehlé, Steinfeld setting

𝑑 = 2𝑘 , 𝑛 = 2𝑘−1, 𝑅 = 𝐙 𝑋 /(𝑋𝑛 + 1), 𝜒 = 𝐷𝑍𝑛,𝜎 , 𝜎 > poly 𝑛 ⋅ 𝑞.

• PK is indistinguishable from uniform random element in 𝑅𝑞

• Tensoring helps with noise growth, but is rather unnatural and 

annoying

For a “more practical” version:

• Need SPR assumption, take narrow key distribution

• Power and decomposition functions with varying base 𝑤
give more flexibility trading size of evaluation key vs. noise growth

• Use distributions of different widths for different purpose

Avoiding the SPR assumption



Parameters

• Correctness via noise bounds

• Security via estimating runtime of attack on scheme in time 280

based on Lindner-Peikert analysis

𝑞 (bits) Dimension 𝑛 Size of elt in 𝑅 𝑡 Levels 𝐿

128 212 66 KB 2 3

1024 1

256 213 262 KB 2 7

1024 4

1024 215 4.2 MB 2 31

1024 19



Implementation

We have implemented homomorphic encryption with 

127-bit prime 𝑞, 𝑛 = 4096, 𝑤 = 232

• plain C, no assembly (yet), a lot potential for optimization

Operation Encrypt Decrypt Add Mul

Cycles/106 79.2 14.1 0.07 90.7

ms 27 5 0.03 31

Intel Core i7-3520M @ 2.893 GHz

We have not implemented AES yet! 

(Due to lack of motivation for using AES as a benchmark for HE.)
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