Simple Matrix Scheme for Encryption (ABC)

Adama Diene, Chengdong Tao, Jintai Ding

April 26, 2013

Adama Diene, Chengdong Tao, Jintai Ding (Simple Matrix Scheme for Encryption (ABC)

April 26, 2013 1 / 31

Cryptosystems whose Public Keys are set of multivariates functions over finite fields

Adama Diene, Chengdong Tao, Jintai Ding (Simple Matrix Scheme for Encryption (ABC)

• MPKQ are Good Candidates for Post Quantum Cryptography (PQC).

• MPKQ are Much More Computationally Efficient than Number Theoric based Schemes.

- Size of their Keys: The size of MPKQ are usually very big compare to other types of schemes. But lately some improvement to reduced them were proposed.
- Insecurity: In recent years, several MPKCs were proposed and most of them end up being insecure.

• The Main Defect for insecurity for most of these MPKQ is that some Quadratic Forms associated with their central maps are of Low Rank.

Some Examples of Schemes with the Low Rank Problem.

• The Matsumoto-Imai Scheme (MI or C^*): initially broken by Pattarin using Linearization Equations. But Ding and et. have also shown that C^* has some quadratic form associated with the central map which has only Rank 2.

• Hidden Field Equation (*HFE*): was proposed by Pattarin. But Kipnis and Shamir found a way to recover the key with the help of the MinRank Attack.

• TTM scheme: proposed by T. T. Moh but broken after by Courtois and Goubin who exploited the fact that some quadratic form associated with the central map has low rank.

Illustration of the MinRank Attack with HFE

Let p is a prime, $q = p^e$ and $k = F_q$ be a finite field with q elements. Let K be n degree extension of k, then $K \cong k^n$, where k^n is the n dimension vector space over k.

Let $\phi: K \to k^n$ be the isomorphism map and its inverse be ϕ^{-1} .

The central map of HFE is a univariate polynomial P(x) over K of the form

$$P(x) = \sum_{i=0}^{r-1} \sum_{j=0}^{r-1} p_{ij} x^{q^i + q^j},$$

where $p_{ij} \in K$ and r is a small constant such that P(x) can be inverted efficiently. Let

$$ar{F} = T \circ \phi \circ P \circ \phi^{-1} \circ S$$
,

where T, S are two invertible affine transformations over k^n . Then the public key is \overline{F} , which are *n* quadratic polynomials. The private key are T, P, S.

Illustration of the MinRank Attack with HFE

Kipnis and Shamir showed that the public key \overline{F} and the transformations S, T, T^{-1} can be viewed as maps G^*, S^*, T^*, T^{*-1} over K with

$$S^*(x) = \sum_{i=0}^{n-1} s_i x^{q^i}, T^{*-1}(x) = \sum_{i=0}^{n-1} t_i x^{q^i}.$$

Thus $G^*(x) = T^*(P(S^*(x)))$. Write $G^*(x)$ as the following form:

$$G^*(x) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} g_{ij} x^{q^i+q^j} = \underline{x} G \underline{x}^t,$$

where $\underline{x} = (x, x^q, \dots, x^{q^{n-1}})$ is a vector over K, \underline{x}^t is the transpose of \underline{x} and $G = [g_{ij}]$ is a matrix over K.

Therefore, the identity $T^{*-1}(G^*(x)) = P(S^*(x))$ implies that

$$G'=\sum_{i=0}^{n-1}t_kG^{*k}=WPW^t.$$

where G^{*k} is the matrix over K whose (i, j) entry is $g_{i-k,j-k}^{q^k}$, i - k and j - k are computed modulo n, W is a matrix over K whose (i, j) entry is $s_{i-j}^{q^i}$, i - j is computed modulo n, and $P = [p_{ij}]$ is a matrix over K.

Since the rank of WPW^t is not more than r, recovering $t_0, t_1, \cdots, t_{n-1}$ can be reduced to solve a MinRank problem, that is, to find $t_0, t_1, \cdots, t_{n-1}$ such that

$$Rank(\sum_{i=0}^{n-1}t_kG^{*k})\leq r.$$

If we find the values t_0, t_1, \dots, t_{n-1} , we can easily recover T and S.

Therefore, the key point is to solve the MinRank problem. Since r is small, we can solve the MinRank problem by known methods.

Illustration of the MinRank Attack with HFE

 The Kipnis-Shamir attack was improved by Courtois using a different methods to solve the MinRank problem.

• Ding et al. showed that the original Kipnis-Shamir attack and the improvement of Courtois are not valid.

• Faugère et al. proposed later a valid improvement of Kipnis-Shamir attack against HFE.

The main motivation of this work is to:

• Design a scheme such that all Quadratic forms associated with the central map have relatively high Rank.

• Design a scheme that can resist all known attacks if parameters are chosen properly.

April 26, 2013

11 / 31

Main Idea

Create some Matrices having high rank and use some Simple Matrix Multiplication to get a Multivariate Publick Key Scheme that we denote in short by the ABC cryptosystem. Let $k = F_q$ be a finite field with q elements and p be the characteristic of k.

Let *n*, *m* be a integer, where $n = s^2$, m = 2n.

We denote by k^n the set of all *n*-tuples of elements of k and by k^m the set of all *m*-tuples of elements of k.

The plaintext will be represented by $(x_1, x_2, \cdots, x_n) \in k^n$.

The ciphertext will be represented by $(y_1, y_2, \cdots, y_m) \in k^m$.

Let $k[x_1, x_2, \dots, x_n]$ be a polynomial ring with *n* variables in *k*.

Let $\mathcal{L}_1: k^n \to k^n$ and $\mathcal{L}_2: k^m \to k^m$ be 2 affine transformations,

i.e.
$$\mathcal{L}_1(x) = L_1x + u$$
 and $\mathcal{L}_2(y) = L_2y + v$

where L_1 and L_2 are respectively an $n \times n$ and $m \times m$ matrix with entries in k, $x = (x_1, x_2, \dots, x_n)^t$, $u = (u_1, u_2, \dots, u_n)^t$, $y = (y_1, y_2, \dots, y_m)^t$, $v = (v_1, v_2, \dots, v_m)^t$ and t denotes the transpose of matrix.

Construction of the SM Cryptosystem Central map

Let

$$A = \begin{pmatrix} x_1 & x_2 & \cdots & x_s \\ x_{s+1} & x_{s+2} & \cdots & x_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ x_{(s-1)s+1} & x_{(s-1)s+2} & \cdots & x_{s^2} \end{pmatrix},$$

$$B = \begin{pmatrix} b_1 & b_2 & \cdots & b_s \\ b_{s+1} & b_{s+2} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{(s-1)s+1} & b_{(s-1)s+2} & \cdots & b_{s^2} \end{pmatrix} \text{ and }$$

$$C = \begin{pmatrix} c_1 & c_2 & \cdots & c_s \\ c_{s+1} & c_{s+2} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{(s-1)s+1} & c_{(s-1)s+2} & \cdots & c_{s^2} \end{pmatrix}$$

Adama Diene, Chengdong Tao, Jintai Ding (Simple Matrix Scheme for Encryption (ABC)

э

Construction of the SM Cryptosystem Central map

A, B, and C defined above are $3 \ s \times s$ matrices with $x_i \in k$ ($i = 1, 2, \dots, n$), b_i and c_i ($i = 1, 2, \dots, n$) are random linear combinaisons of elements taken from the set $\{x_1, x_2, \dots, x_n\}$.

Let
$$E_1 = AB$$
, $E_2 = AC$,

we denote by
$$f_{(i-1)s+j} \in k[x_1, x_2, \cdots, x_n]$$

the (i, j) element of E_1 $(i, j = 1, 2, \cdots, s)$.

and

$$f_{s^2+(i-1)s+j} \in k[x_1, x_2, \cdots, x_n]$$

the (i, j) element of E_2 $(i, j = 1, 2, \cdots, s)$.

With the notation above, we obtain m polynomials f_1, f_2, \cdots, f_m

We define then

$$\mathcal{F}(x_1, \cdots, x_n) = (f_1(x_1, \cdots, x_n), f_2(x_1, \cdots, x_n), \cdots, f_m(x_1, \cdots, x_n)).$$

$$\bar{\mathcal{F}} = \mathcal{L}_2 \circ \mathcal{F} \circ \mathcal{L}_1 = (\bar{f}_1, \bar{f}_2, \cdots, \bar{f}_m),$$

Secret Key:

The secret key is made of the following two parts:

1) The invertible affine transformations $\mathcal{L}_1, \mathcal{L}_2$.

2) The matrices B, C.

Adama Diene, Chengdong Tao, Jintai Ding (Simple Matrix Scheme for Encryption (ABC)

FrameConstruction of the SM Cryptosystem Title $_{\mbox{\scriptsize Key}}$

Public Key

The public key is made of the following two parts:

1) The field k, including the additive and multiplicative structure;

2) The maps $\bar{\mathcal{F}}$, equivalently, its *m* total degree two components

$$\overline{f}_1(x_1,\cdots,x_m), \overline{f}_2(x_1,\cdots,x_n),\cdots,\overline{f}_m(x_1,\cdots,x_n) \in k[x_1,\cdots,x_n].$$

Encryption

Given a message (x_1, \dots, x_n) , the corresponding ciphertext is: $(y_1, \dots, y_m) = \overline{\mathcal{F}}(x_1, \dots, x_n).$

Decryption

Given the ciphertext (y_1, \dots, y_m) , decryption includes the following steps:

1) Compute
$$(y'_1, \cdots, y'_m) = \mathcal{L}_2^{-1}(y_1, \cdots, y_m).$$

2) Let

Adama Diene, Chengdong Tao, Jintai Ding (Simple Matrix Scheme for Encryption (ABC)

Decryption

Since $E_1 = AB$, $E_2 = AC$ and set A is an $s \times s$ nonsingular matrix, we consider the following cases:

(i) If E_1 is invertible, then $BE_1^{-1}E_2 = C$. We have *n* linear equations with *n* unknowns x_i , $i = 1, 2, \dots, n$.

(ii) If E_2 is invertible, but E_1 is not invertible, then $CE_2^{-1}E_1 = B$. We also have *n* linear equations with *n* unknowns $x_i, i = 1, 2, \dots, n$.

(iii) If both E_1 and E_2 are not invertible, then $A^{-1}E_1 = B$, $A^{-1}E_2 = C$. We interpret the elements of A^{-1} as the new variables, then we have *m* linear equations with *m* unknowns. We note that, if A is a singular matrix, we may decrypt failure. The probability of A is invertible is $(1 - \frac{1}{q})(1 - \frac{1}{q^2})\cdots(1 - \frac{1}{q^n})$. Therefore, the probability of decryption failure is $1 - (1 - \frac{1}{q})(1 - \frac{1}{q^2})\cdots(1 - \frac{1}{q^n}) \approx \frac{1}{q}$.

Adama Diene, Chengdong Tao, Jintai Ding (Simple Matrix Scheme for Encryption (ABC)

For a practical implementation, we let k = GF(q) be a finite field of q = 127 elements and n = 64. In this case, the plaintext consist of the message $(x_1, x_2, \dots, x_{64}) \in k^{64}$. The public map is $\overline{F} : k^{64} \to k^{128}$ and the central map is $F : k^{64} \to k^{128}$.

The public key consists of 128 quadratic polynomials with 64 variables. The number of coefficients for the public key polynomials is $128 \times 64 \times 65/2 = 266,240$, or about 2MB of storage.

The private key consists of two matrices B, C and two affine linear transformations \mathcal{L}_1 , \mathcal{L}_2 . The total size is about 162.5KB. The size of document is $8n = 8 \times 64 = 512 bits$. The total size of the ciphertext is 1024bits.

Security Analysis

High order linearization equation attack

Since
$$BE_1^{-1}E_2 = C$$
 or $CE_2^{-1}E_1 = B$,

If $BE_1^{-1}E_2 = C$ then there exist polynomials g_1 , $deg(g_1) \leq s$, such that

$$Bg_1(E_1)E_2 = Cdet(E_1)$$

Thus we have linearization equation with order n + 1. Specifically, the plaintext and the ciphertext satisfy the following equation:

$$\sum_{i_0=1}^{n} \sum_{i_1,\cdots,i_s=1}^{m} \mu_{i_0,i_1,\cdots,i_s} x_{i_0} y_{i_1} \cdots y_{i_s} + \sum_{i_0=1}^{n} \sum_{i_1,\cdots,i_{s-1}=1}^{m} \nu_{i_0,i_1,\cdots,i_{s-1}} x_{i_0} y_{i_1} \cdots y_{i_{s-1}} + \sum_{i_0=1}^{n} \gamma_{i_0} x_{i_0} + \sum_{i_1=1}^{m} \xi_{i_1} y_{i_1} + \theta = 0.$$

We treat the coefficients μ_{i_0,i_1,\cdots,i_s} , $\nu_{i_0,i_1,\cdots,i_{s-1}}$, \cdots , γ_{i_0} , ξ_{i_1} , θ as variables taking value in k.

The number of variables in the above equation is

$$n\sum_{j=0}^{s} \binom{m}{j} + m + 1 = n\binom{m+s}{s} + m + 1.$$

Using the public key we can generate many plaintext-ciphertxet pairs. By substituting these plaintext-ciphertxet pairs to the equations, we have $n\binom{m+s}{s} + m + 1$ linear equations in $n\binom{m+s}{s} + m + 1$ variables.

However, the computation complexity of solving this linearization equation is $(n\binom{m+s}{s} + m + 1)^{\omega}$, where $\omega = 3$ in the usual Gaussian elimination algorithm and $\omega = 2.3766$ in

April 26, 2013

26 / 31

improved algorithm. Therefore, security level for the implementation proposed in section 4 is about 2^{108} .

Adama Diene, Chengdong Tao, Jintai Ding (Simple Matrix Scheme for Encryption (ABC)

For the 2 rank attacks, we have:

• The complexity of MinRank attack against our scheme is $O(q^{\lceil \frac{m}{n} \rceil 2^s} m^3)$. Therefore, security level for the implementation proposed in section 4 is lager than 2^{240} .

• For the High Rank Attack. We will need about $O(n^6q^{2s})$ field multiplications, and the security level require is about 2^{140} wich is less than the security level of the proposed implementation.

In fact, since the rank of Q_i is associate with $2\sqrt{n}$, the complexity of the rank attack may not be polynomial time. Therefore, the rank attack is not applicable for our scheme.

Security Analysis Algebraic Attack

Let $\bar{f}_1(x_1, x_2, \dots, x_n)$, $\bar{f}_2(x_1, x_2, \dots, x_n)$, \dots , $\bar{f}_m(x_1, x_2, \dots, x_n)$ be the public key and y_1, y_2, \dots, y_m be the ciphertext. We obtain the system

$$\begin{cases} \bar{f}_1(x_1, x_2, \cdots, x_n) = y_1 \\ \bar{f}_2(x_1, x_2, \cdots, x_n) = y_2 \\ \cdots \\ \bar{f}_m(x_1, x_2, \cdots, x_n) = y_n \end{cases}$$

For k = GF(3), we obtain the following results with a direct attack using MAGAMA(2.12-16) on a 1.80GHz Intel(R) Atom(TM) CPU

п	9	16	25
time(s)	0.016	3.494	17588.380
memory(MB)	3.4	8.1	1111.7
degree of regularity	4	5	6

 A comparation with HFE challenge 1 by Patarin shows that

For HFE with q = 2, n = 80, the degree of central map is 96 The authors estimated that the complexity of solving P(x) = y over the finite field $GF(2^{80})$ is about $O(d^2n^3)$ or $O(dn^3 + d^3n^2)$ -depending on the chosen algorithms, where d is the degree of P(x)

Thus the decryption process needs about 6.4×10^9 times field multiplication over the finite field $GF(2^{80})$.

For the ABC scheme with q = 127, n = 64, m = 128, the steps of decryption presented earlier need only about $128^3 = 2^{21} \approx 2.1 \times 10^6$ times field multiplication over the finite field GF(127).

We propose here a new multivariate algorithm for encryption called SM wich has the follow properties with some well chosen parameters:

- can resist to all known attack.
- all the quadratic forms associate with the central map are not of low rank but related to some variable integer *n*.

April 26, 2013

30 / 31

• computation of decryption is very fast.

THANK YOU

Adama Diene, Chengdong Tao, Jintai Ding (Simple Matrix Scheme for Encryption (ABC)

æ

・ロト ・回ト ・ヨト